행위

유클리드 기하학

조무위키

01 문서/ 수학과 관련된 것/ 다룹니다.
01 문서/ 수학과 관련된 무언7ㅏ0ㅔ 대해서 다루/ 문서입니다.
/ 일 수도 전공 수학일 수도 있고, 혹/ 수학과 관련된 역사속의 인물일지도 모/니다.
01 문서/ 읽다7ㅏ 수학뽕0ㅔ 빠져버려도 본 위키/ 책임지지 않/니다.

1 + 1 = 귀요미>_<

Euclidean geometry


개요[편집]

그리스 수학자인 에우클리데스(유클리드)에 의해 체계화된 수학의 한 분야. 유클리드의 저서 원론의 제일 처음에 등장한다. 이 원리는 공리를 도입하는 것으로 부터 시작됬다.

유클리드 기하학이 적용되는 위상 공간을 유클리드 공간(Euclidean space)이라고 한다.

5개의 공준[편집]

원론에는 5개의 공준(=공리)가 등장하는데 다음과 같다.

1. 서로 다른 두 점이 주어졌을 때, 그 두 점을 잇는 직선을 그을 수 있다.
2. 임의의 선분은 더 연장할 수 있다.
3. 서로 다른 두 점 A, B에 대해, 점 A를 중심으로 하고 선분 AB를 한 반지름으로 하는 원을 그릴 수 있다.
4. 모든 직각은 서로 같다.
5. 임의의 직선이 두 직선과 교차할 때, 교차되는 각의 내각의 합이 두 직각(180도)보다 작을 때, 두 직선을 계속 연장하면 두 각의 합이 두 직각보다 작은 쪽에서 교차한다. (평행선의 공리, 제5공준)

이 다섯 가지의 공준을 가지고 이루어진 기하학을 유클리드 기하학이라고 부른다.

평행선 공준이 성립하지 않으면 비유클리드 기하학이라고 부른다.

관련 문서[편집]

둘러보기[편집]

보기  토론  편집  역사
기하학 · 위상수학
이론
기본대상 도형 차원 위상 공간
다루는 대상과 주요토픽
도형·차원 0차원 · (특수각) · 입체각
1차원 선분 · 반직선 · 직선 · 곡선
2차원 다각형 · (부채꼴 · 활꼴) · 타원
3차원 다면체 · 원뿔 · 원기둥 · · 토러스
4차원 다포체 · 초구 · 타이거
5차원 이상
위상도형 사영평면 · 뫼비우스의 띠 · 클라인의 병 · 매듭(매듭 일람)
관련 틀 {{도형 구분}} · {{차원 일람}}
위상 공간 유클리드 공간(유클리드 벡터) · 쌍곡 공간 / 타원 공간 · 연결 공간 · 옹골 공간 · 다양체(대수 다양체)
호몰로지 · 스킴(에탈 코호몰로지)
정리
피타고라스의 정리 · 사인 법칙 · 코사인 법칙 · 데자르그 정리 · 메넬라오스 정리 · 나폴레옹의 정리 · 스튜어트 정리 · 체바 정리 · 톨레미의 정리
오심과 관련된 정리 · 방멱 정리 · 파스칼 정리 · 라이데마이스터 변환 · 오일러 지표 · 푸앵카레 정리 · 호지 추측미해결
분야
논증기하학 · 대수기하학 · 미분기하학 · 해석기하학 · 매듭이론