조무위키
조무위키
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보
행위
문서
토론
편집
역사 보기
0.99...=1
편집하기 (부분)
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
=== [[귀류법]]을 사용한 증명 === 0.99999999999..... < 1이라고 가정하자. 임의의 실수 a, b에 대하여 a < b가 참일 때 a < c < b인 임의의 실수 c가 반드시 존재한다. (실수의 조밀성) 즉 a = 0.999..., b = 1이라고 가정한다면 (a + b)/2인 실수가 반드시 존재한다. 하지만 소숫점 밑으로 9가 무한히 반복하는 상황에서 맨 뒤에 또 다른 자리수를 붙이는 것은 의미가 없다. 예를 들어 a와 b의 중간값으로 0.99999.......5라고 하는 것은 옳은 결과값이 아니다. 0.99999.....5는 9가 n번 반복하는 상황(n은 임의의 실수)에서 소숫점 아래 n+1번째 자리가 5인 유한소수이다. 그러므로 0.9999999....5 < 0.9999999.... 이다. 즉 0.999...와 1 사이에 실수가 없으므로, 실수의 조밀성을 위반하기 때문에 위의 가정은 모순이다. 따라서 0.999... = 1이다. ㄴ 마찬가지 방법으로 이번엔 b를 0.999... 이라고 놓아보자 그렇다면 b보다 작은 이 전의 숫자가 존재할것이다 이 숫자를 이과생들은 어찌 표현하는진 모르겠지만 편의상 0.999...8이라고 하자(끝이 8로 끝나는 유한소수가 아니니 착각하지마라)다시 이것을 a라고 치자 일반적인 상식에 의하면 a <b겠지만 위의 똑똑하신 이과충님의 실수의 조밀성에 의한 증명에 따라 a=b가 된다 다시 이번엔 a를 b로 두고 역시나 이 숫자보다 작은 0.999...7이라는 숫자는 반드시 존재한다 이런식으로 나아가다보면 언젠간 a값은 0 이 될것이다 근대 1=0.999...이라고 했다 그럼0.999...=0.999...8=0.999...7=...=0 이 된다 이번엔 반대로 한없이 올라가보자 그럼 a=b=무한대가되겠지 결론은 0=1=2=3=...=무한대가 된다 위와 같은 증명에 따라 나의 키는 173이 아니라 187이다 왜냐면 173=187이니까 ㄴ 느가 실수의 조밀성 자체를 잘못 이해하는거다. 일단 a와 b란 서로 다른 두 실수가 있을 때, 두 실수 a, b 사이의 숫자는 무한하게 많다. 만약 a와 b 사이에 어떠한 실수도 없다면 그건 a=b를 의미하는거지, a와 b 사이에 어떤 수도 없는데 a≠b라고 주장하는 것 자체가 에러임. ㄴ 그니깐 귀류법으로 a≠b라고 가정한다음에 a와 b 사이에 아무것도 없다고 보인거잖아. ㄴ 애초에 0.999•••8을 무한소수라고 가정한 것부터 잘못된 것 같은데? 순환소수 0.999•••9는 정의할 수 있는 딱부러지는 값(0.9에서 9위에 점하나 혹은1/9×9)이 있는데 0.999•••8은 무리수야 근데 무리수면 적용이 되겠지만 뒤가 8이라는 것을 안 이상 무한소수라고 할 수도 없어(맨 뒤가 뭔지 알면 애초에 무한하다고 할 수 없음. 또 0.999•••9가지고 태클 못거는 이유는 1/9라는 수를 9곱해서 만든것이 0.999•••9이기 때문이야 그니까 예상도) 무한소수가 아닌데 무한소수하고 0.999•••8을 비교하는게 애초에 잘못되었다는거
요약:
조무위키에서의 모든 기여는 CC BY-SA 4.0 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
조무위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)