조무위키
조무위키
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보
행위
문서
토론
편집
역사 보기
수학 가형 141129
편집하기 (부분)
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
===Phase1=== 알다시피 벡터의 핵심은 크기와 방향을 갖는다는 것이다. 다시말해 크기와 방향을 갖기만 하면 시점은 아무래도 좋다는 것이다. PQ벡터의 크기가 지름 4를 못넘는건 아까 확인했다. 사실 여기서 시점을 원점 O로 바꿔서 PQ벡터 = OT벡터라는 새로운 벡터로 치환해도 별 상관 없다. 그럼 상황은 대충 다음과 같다. [[파일:수학가형141129-1.JPG|700px]] 즉, 치환된 OT벡터의 점 T는 반지름이 4인 구 '''안에''' 있는 점이라고 봐도 무방하다. PQ벡터와 평면 y = 4의 법선벡터가 이루는 각을 θ1, PQ벡터와 평면 y + √3z + 8 = 0의 법선벡터가 이루는 각을 θ2라고 하면, 직선과 평면의 관계에 의해서, 각 정사영 벡터 P1Q1, P2Q2와 PQ벡터가 이루는 각은 90 - θ1, 90 - θ2이므로 P1Q1벡터의 크기와 벡터 P2Q2의 크기는 다음과 같다. [[파일:수학가형141129-2.JPG|200px]] 따라서 구하고자 하는 식을 정리하면 다음과 같다. [[파일:수학가형141129-3.JPG|600px]]
요약:
조무위키에서의 모든 기여는 CC BY-SA 4.0 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
조무위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)