조무위키
조무위키
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보
행위
문서
토론
편집
역사 보기
수학 가형 140921
편집하기 (부분)
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
==풀이 1 (그냥 t를 소거하는 방식)== ===Phase 1=== 근데 각 식들을 잘 보다보니 x = e<sup>t</sup>, t = lnx 로 대놓고 치환해서 보기 싫은 t를 다 제거할 수 있도록 문제를 줬다. 역시 평가원 성선설은 팩트다. 낼름 받아먹도록 하자. 모두 치환해버리면 y = {2(lnx)<sup>2</sup> + n(lnx) + n}x 가 된다. 즉 t가 제거된 채로 y = f(x)를 구해버렸다. 이젠 매개변수 문제도 뭣도 아닌 단순 미분 문제다. (정의역은 x>0) f'(x) = 2(lnx)<sup>2</sup> + (4+n)(lnx) + 2n... 세상에 여기서 인수분해까지 된다. 젠장 믿고있었다고... ! 인수분해까지 마무리하면 f'(x) = (2lnx + n)(lnx + 2) 이다. ===Phase 2=== f(x)의 도함수까지 구했으니 여기서 도함수의 부호변화를 조사해서 최솟값을 판정해야한다. 여기서 조사해야할 대상은 f'(x) = 0이 되는 지점<ref>머학에선 임계점이라고 부른다. 꼭 도함수 0인 지점만 말하는건 아니지만 대충 맞다.</ref>인 x = e<sup>-n/2</sup> 이나 x = e<sup>-2</sup>가 될 것이다. 근데 마침 정의역도 x >= e<sup>-n/2</sup> 이었다. 아마 n의 값에 따라서 바뀌지 않을까 예상이 된다. 일단 잘 모르겠으니 n = 3을 집어넣고 따져보자. 일단 f'(x)는 x를 양의 무한대로 극한을 취하나 0으로 극한을 취하나 둘다 양의 무한대로 간다. 이를 알고서 그래프를 대충 그려본다. ====(i) n = 3==== [[파일:수학가형 140921-1.png|700px]] f'(x)는 정의역 내에서 0보다 크거나 같으므로 f(x)는 증가함수이다. 따라서 x의 최솟값인 e<sup>-3/2</sup>에서 f(x)도 최솟값을 갖는다. ====(ii) n = 4==== [[파일:수학가형 140921-2.png|700px]] 도함수가 중근을 가져버린다. f'(x)는 정의역 내에서 0보다 크거나 같으므로 f(x)는 증가함수이다. 따라서 x의 최솟값인 e<sup>-2</sup>에서 f(x)도 최솟값을 갖는다. ====(iii) n = 5==== [[파일:수학가형 140921-3.png|700px]] 두 근 모두 정의역 내에서 잘 정의 되었고, x = e<sup>-2</sup>에서 극솟값을 갖는 것을 확인 할 수 있다. f(x)는 정의역 내에서 연속인 함수이므로, f(x)는 x = e<sup>-2</sup>에서 최소이다. ====(iv) n = 6==== (iii)와 같다. n = 3인 경우를 제외한 모든 경우에서 x = e<sup>-2</sup>에서 최솟값을 갖는 것을 확인할 수 있으므로 a(3) = e<sup>-3/2</sup>, a(4) = a(5) = a(6) = e<sup>-2</sup> 이다. {{수직분수|b(n)|a(n)}} = {{수직분수|{2(lna(n))<sup>2</sup> + n(lna(n)) + n}a(n)|a(n)}} = {2(ln a(n))<sup>2</sup> + n(ln a(n)) + n} 이다. n에 3, 4, 5, 6을 모두 집어 넣으면 {{수직분수|b(3)|a(3)}} + {{수직분수|b(4)|a(4)}} + {{수직분수|b(5)|a(5)}} + {{수직분수|b(6)|a(6)}} = 3 + 4 + 3 + 2 = 12 따라서 답은 2번이다.
요약:
조무위키에서의 모든 기여는 CC BY-SA 4.0 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
조무위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)