조무위키
조무위키
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보
행위
문서
토론
편집
역사 보기
0.99...=1
편집하기 (부분)
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
== 증띵 == ===급식충도 이해가능한 존나 쉬운 증명 === {{진실}} 0.111...를 분수로 나타내면 1/9이다. 맞지? 0.111...을 9배하면 0.999...지? 그럼 분수는 9/9가 되겠네? 근데 9/9는 1을 9로 나눈것 중 9개가 있는거니까 1이네? 끝 '됐'냐? 제발 존나 뇌절하면서까지 0.999...≠1 증명하려고 하지 말고 걍 빨리 [[디시위키 꺼라|디키 끄고]] 공부나 해라 === [[중학교]]에서 배우는 가장 기초적인 증명 === [[파일:0.99-2.gif]] 사실 이방법은 증명이라 할 수 없다. 1 = 0.999... 라는 사실을 엄밀하게 설명할 수 없기 때문이다. ㄴ 이 방법으로 증명 가능하다. 무한소수의 정의상 이미 0.999... 는 수렴값으로 정의된다. 그 말은, 실수의 사칙연산을 자유자재로 할 수 있으므로 위 증명은 옳다. === [[귀류법]]을 사용한 증명 === 0.99999999999..... < 1이라고 가정하자. 임의의 실수 a, b에 대하여 a < b가 참일 때 a < c < b인 임의의 실수 c가 반드시 존재한다. (실수의 조밀성) 즉 a = 0.999..., b = 1이라고 가정한다면 (a + b)/2인 실수가 반드시 존재한다. 하지만 소숫점 밑으로 9가 무한히 반복하는 상황에서 맨 뒤에 또 다른 자리수를 붙이는 것은 의미가 없다. 예를 들어 a와 b의 중간값으로 0.99999.......5라고 하는 것은 옳은 결과값이 아니다. 0.99999.....5는 9가 n번 반복하는 상황(n은 임의의 실수)에서 소숫점 아래 n+1번째 자리가 5인 유한소수이다. 그러므로 0.9999999....5 < 0.9999999.... 이다. 즉 0.999...와 1 사이에 실수가 없으므로, 실수의 조밀성을 위반하기 때문에 위의 가정은 모순이다. 따라서 0.999... = 1이다. ㄴ 마찬가지 방법으로 이번엔 b를 0.999... 이라고 놓아보자 그렇다면 b보다 작은 이 전의 숫자가 존재할것이다 이 숫자를 이과생들은 어찌 표현하는진 모르겠지만 편의상 0.999...8이라고 하자(끝이 8로 끝나는 유한소수가 아니니 착각하지마라)다시 이것을 a라고 치자 일반적인 상식에 의하면 a <b겠지만 위의 똑똑하신 이과충님의 실수의 조밀성에 의한 증명에 따라 a=b가 된다 다시 이번엔 a를 b로 두고 역시나 이 숫자보다 작은 0.999...7이라는 숫자는 반드시 존재한다 이런식으로 나아가다보면 언젠간 a값은 0 이 될것이다 근대 1=0.999...이라고 했다 그럼0.999...=0.999...8=0.999...7=...=0 이 된다 이번엔 반대로 한없이 올라가보자 그럼 a=b=무한대가되겠지 결론은 0=1=2=3=...=무한대가 된다 위와 같은 증명에 따라 나의 키는 173이 아니라 187이다 왜냐면 173=187이니까 ㄴ 느가 실수의 조밀성 자체를 잘못 이해하는거다. 일단 a와 b란 서로 다른 두 실수가 있을 때, 두 실수 a, b 사이의 숫자는 무한하게 많다. 만약 a와 b 사이에 어떠한 실수도 없다면 그건 a=b를 의미하는거지, a와 b 사이에 어떤 수도 없는데 a≠b라고 주장하는 것 자체가 에러임. ㄴ 그니깐 귀류법으로 a≠b라고 가정한다음에 a와 b 사이에 아무것도 없다고 보인거잖아. ㄴ 애초에 0.999•••8을 무한소수라고 가정한 것부터 잘못된 것 같은데? 순환소수 0.999•••9는 정의할 수 있는 딱부러지는 값(0.9에서 9위에 점하나 혹은1/9×9)이 있는데 0.999•••8은 무리수야 근데 무리수면 적용이 되겠지만 뒤가 8이라는 것을 안 이상 무한소수라고 할 수도 없어(맨 뒤가 뭔지 알면 애초에 무한하다고 할 수 없음. 또 0.999•••9가지고 태클 못거는 이유는 1/9라는 수를 9곱해서 만든것이 0.999•••9이기 때문이야 그니까 예상도) 무한소수가 아닌데 무한소수하고 0.999•••8을 비교하는게 애초에 잘못되었다는거 === 국어를 사용한 증명 === 1 - 0.999... = 0.000...00001 ''(해설을 위해 잠시 이렇게 표기함)'' 에서 0.000...01은 0이 무한히 나오는데 여기서 無限은 끝이 없음, 즉 0만 '''밑도 끝도 없이''' 좆빠지게 쳐나오니 마지막 1이 끼어들 자리가 없으므로 0.0000...001 = 정확히 0 인거다. === 기타 === 수열의 극한을 이용한 증명, 1/3 = 0.3333...을 이용한 증명 등 무궁무진하다. === 유리수 범위에서의 증명 === 증명 과정은 가능한 풀어서 쓰겠다. 우선 유리수, 그러니까 분모(물론, 0이 아녀야 한다.)와 분자가 모두 정수인 분수로 나타낼 수 있는 수에 대해 다음이 성립한다. :'''아르키메데스 성질'''. 모든 0보다 큰 유리수 a/b에 대해 어떤 자연수 n을 곱해서 모든 유리수 c/d보다 크게 만들 수 있다. 수식으로 표현하면, n×a/b≥c/d인 n이 존재한다. :쉽게 한 가지 예를 들면 1/999에 어떤 자연수 n을 곱하면 큰 수 999보다 크게 만들 수 있다. n을 1000000정도로 하면, 1001.001001001...이 되어 999보다 크다. 큰 수가 999보다 더 커도 n을 충분히 크게 하면 상관 없다. :증명. 명제가 거짓이라면 어떤 0보다 큰 유리수 a/b는 암만 큰 자연수 n을 곱해도 어떤 유리수 c/d보다 작아야 한다. 수식으로 표현하면, n×a/b<c/d이어야 한다. ::물론 c와 d 중에 하나가 음의 정수든지 해서 c/d가 0보다 크지 않다면 애초에 a/b보다 작으므로 따져 볼 필요도 없다. 그러니까 c와 d가 모두 자연수인 경우만 고려하면 된다. ::부등식의 양변에 bd를 곱해서 이항하면 0<cb-n(ad)이 되고 이는 자연수여야 한다. 하지만 자연수는 작은 쪽으로는 한도가 있지만 큰 쪽으로는 한도가 없다는 특징이 있다. ::어떤 큰 자연수 n에 대해서 cb-n(ad)가 0보다 크다고 해도, n+1, n+2, ...는 더 큰 자연수이므로 cb-(n+1)ad, cb-(n+2)ad, ...로 더 작은 수를 얼마든지 만들 수 있다. ::따라서 cb-n(ad)가 0보다 커야 한단 제한이 있는 이상, 하다못해 -10000보다 커야 한단 제한이 있대도 n이 커지면 cb-n(ad)는 언젠가 그보다 작아질 수밖에 없다. 그러므로 이 명제는 참이다. 이제 0.9, 0.99, 0.999와 같은 것들이 유리수이니 순환소수인 0.999...도 유리수로 정의될 수 있고, 그러면 유리수 범위에서 0.999...=1을 증명할 수 있다. :'''명제'''. 유리수 범위에서, 0.999...=1이다. 수식으로 표현하면, 0.999...+e=1인 e는 0 이외에 없다. :증명. 0.999...가 유리수이면 e=1-0.999...도 유리수이다. 이것이 0이 아니라면, 0.999...>1은 아닐 것이므로 0보다 큰 유리수이다. ::그러니 위에서 증명한 아르키메데스 성질에 의해 어떤 자연수 n을 곱해서 모든 유리수보다 크게 만들 수 있다. 1≤ne≤2를 만족하는 자연수 n 가운데 하나를 골라 k라고 하겠다. ::그러면 k×0.999...+ke=k에서 k-2≤k×0.999...≤k-1인데, k는 유한한 자연수이므로 어떤 유한소수 0.99...9의 9의 개수를 k로 하여 k-1<k×0.99...9를 만들 수 있다. :쉽게 한 가지 예를 들어 9의 개수를 11로 두면 10<11×0.99999999999=10.99999999989처럼 k가 1이 늘어나면 끝 자리 수만 ...1씩 줄어드는데 9의 숫자가 하나 늘면 k의 열 배의 효과를 내기 때문에 얼마든지 k-1<k×0.99...9인 유한소수 0.99...9를 만들 수 있다. ::따라서 0.999...≠1이면 어떤 유한소수 0.99...9에 대해 0.99...9>0.999...란 결론이 나온다. 여기서 양변에 10^k를 곱하면 99...9>99...9.999...가 되어 0>0.999...가 된다. ::0.999...=1이면 이런 문제는 깨끗이 사라지고 이 명제는 참이다. === 실수 범위에서의 증명 === 유리수 체계와 실수 체계는 엄연히 다른 체계이기 때문에 유리수 범위에서 0.999...=1을 증명한 건 실수 범위에서 증명하는 것과는 별개이고, 실수 범위에서 0.999...=1을 증명하기 위해 우선 유리수를 실수로 확장하는 과정을 개략적으로 살펴보겠다. 자연수 n이 커질수록 x-a_{n}의 절댓값이 0을 향할 때 수열 a_{n}은 x에 ''가깝다''고 하겠다. x^2=2의 양수인 해 √2에 ''가까운'' 수열은 여러 가지가 있는데, 점화식 a_1=1, a_{n+1}=a_{n}/2+1/a_{n}으로 나타나는 수열이나 그저 한 자리씩 늘려 쓴 {1, 1.4, 1.41, 1.414, 1.4142, ...}가 그 예다. 두 가지 수열의 공통점은 모든 항이 유리수라는 것이고 게다가 무리수에 ''가깝다''는 것이다. 이렇게 유리수에서 빈틈이 보이니 채워 넣을 수 체계를 구성하려면, <code>간단한 발상</code>은 아무래도 √2에 ''가까운'' 무수히 많은 수열을 모은 그 자체를 √2란 수로 '정의'하는 것이고 실제로 모든 실수를 이렇게 정의할 수 있다. 모든 항이 유리수인 모든 수열이 점근하는 모든 값들을 각각의 실수라고 정의한 게 다다. ''가깝다''는 표현을 수렴한다는 용어로 고쳐 쓰면 위의 과정은 곧 그 유명한 극한의 정의인 엡실론-델타 논법으로 정착된다. 극한과 연관 짓는 게 정 마음에 안 든다면 다른 구성 방법은 얼마든지 있으니 참고하길 바란다.[https://en.wikipedia.org/wiki/Construction_of_the_real_numbers] 수열의 극한값이 되는 빠진 점들을 채운 게 실수이고 모든 항이 실수인 모든 수렴하는 수열의 극한값은 실수이다. 따라서 실수에 대해서도 다음이 성립한다. :'''아르키메데스 성질'''. 모든 0보다 큰 실수 x에 대해 어떤 자연수 n을 곱해서 모든 실수 y보다 크게 만들 수 있다. 수식으로 표현하면, nx≥y인 n이 존재한다. :증명. 명제가 거짓이라면 어떤 0보다 큰 실수 x는 암만 큰 자연수 n을 곱해도 어떤 실수 y보다 작아야 한다. 수식으로 표현하면, nx<y이어야 한다. ::물론 y가 0보다 크지 않다면 애초에 x보다 작으므로 따져 볼 필요도 없다. 그러니까 y가 양의 실수인 경우만 고려하면 된다. ::자연수 n이 커지면 nx도 커지는데 y보다 작다면 {x, 2x, 3x, ...}와 같은 수열은 y보다 크지 않은 어떤 값에 수렴할 것인데, 이 값을 c라 하겠다. ::어떤 큰 자연수 k에 대해서 kx가 c-x보다 크다고 하면 (k+1)x는 c보다 크므로 nx는 언젠가 c보다 큰 값을 가진다. 수열은 수렴하지 않고 이 명제는 참이다. 유리수에서와 같은 논리로 실수 범위에서도 0.999...=1을 증명할 수 있고 이제 모든 두 실수 사이에는 적어도 하나의 유리수가 존재한다. === 고등학교 수준으로의 증명 === [[파일:0.9999...=1증명.png]] 극한은 문과도 배우니까 반박시 유인원 ==== 교과 과정은 문제가 없을까? ==== 위의 항목에도 언급된 중학교 때 배우는 가장 기초적인 증명에서 무한급수의 뺄셈을 함부로 해서는 안 된다. 1-1/2+1/3-1/4+1/5-1/6+...=ln2인데 1-1/2-1/4+1/3-1/6-1/8+...=(1-1/2)-1/4+(1/3-1/6)-1/8+...=(ln2)/2인 것처럼 연산하는 순서에 따라 다르게 수렴할 수 있다. 무한급수의 뺄셈을 통한 0.999...=1의 증명이 틀렸다는 게 아니라, 그 방법의 타당성을 검증하는 과정이 필요하다는 뜻이다. :'''명제'''. ∑_{n=1}^{∞} |a_{n}|이 수렴하면, ∑_{n=1}^{∞} a_{n}은 다르게 배열해도 같은 값에 수렴한다. :증명. 다르게 배열한 순서는 원래 순서의 자연수 n에서 함수 f(n)으로의 일대일 대응으로 볼 수 있다. 어떤 큰 자연수 N에 대해서 f(1), f(2), ..., f(N)들 가운데 제일 큰 것을 M이라고 하겠다. ::a_{n}의 모든 항이 양수라고 하면 다르게 배열한 수열은 a_{f(n)}으로 쓸 수 있고, f(1), f(2), ..., f(N)은 1, 2, ..., M에 포함되어서 a_{f(1)}+a_{f(2)}+...+a_{f(N)}은 a_{1}+a_{2}+...+a_{M}을 넘을 수 없다. ::원래의 순서는 다르게 배열한 순서의 자연수 n에서 함수 g(n)으로의 일대일 대응, 그러니까 역함수 f^{-1}(n)로 볼 수 있다. 그러면 a_{g(1)}+a_{g(2)}+...+a_{g(N)}은 a_{1}+a_{2}+...+a_{M}을 넘을 수 없다. ::그런데 |a_{n}|이 수렴하므로 원래의 무한급수든 다르게 배열한 무한급수든 어떤 값보다는 작아야 하고, 그런 제한이 있는 이상 a_{n}은 모든 항이 양수인 급수의 합과 차로 나눌 수 있으니 이 명제는 참이다. 고등학교 때 배우는 증명은 간단하지만 무한급수를 쓴단 건 다르지 않다. 무한급수는 정의에 의해서 수렴하면 수열의 극한값으로 나타낼 수 있고, 실수는 정의에 의해서 실수 자체가 수열의 극한값이라고 해석할 수 있으므로 0.999...=9/10+9/100+9/1000+...=∑_{n=1}^{∞} 9/10^{n}=1이다. ==== 0.999...≠1일 수는 없을까? ==== 사실은 0.999...≠1인 수 체계를 고안해도 상관없다.[https://ko.wikipedia.org/wiki/%EB%B9%84%ED%91%9C%EC%A4%80_%ED%95%B4%EC%84%9D%ED%95%99] 칸토어가 말했듯 수학의 본질은 그 자유로움에 있다. 수 체계를 <code>쓸모 있게</code> 확장한 결과가 0.999...=1일 뿐이고, 수학적 증명은 절대적인 진리를 뜻하지 않는다. 실수 체계가 직관에 맞을 거라 착각할 이유도 없고, 수라는 건 실수든 허수든 실체가 없는 추상적인 개념이다.
요약:
조무위키에서의 모든 기여는 CC BY-SA 4.0 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
조무위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)