조무위키
조무위키
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보
행위
문서
토론
편집
역사 보기
변분법
편집하기 (부분)
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
== 개요 == Calculus of Variations 범함수(Functional)의 최대 또는 최소를 찾는 해석학적 방법. 여기서 범함수는 함수에서 상수로 가는 함수를 의미한다. [[미분방정식]]에서 사용되는 변수분리법과는 관계가 없다. 변분법이 없었더라면 [[라그랑주 역학]]과 [[해밀턴 역학]]이 없었을 것이고, 그러면 [[양자역학]]도 만들어지지 않았을 것이다. 그러나 중요도에 비해 고전적인 [[뉴턴의 운동 3법칙|뉴턴역학]]처럼 그렇게 유명한 이론은 아니다. [[고등학생]] 때 [[미적분]]을 [[공부]]하며 어떤 [[함수]]를 [[미분]]하고 0으로 두는 일을 해봤을 것이다. 이러한 작업은 해당 함수의 최댓값 또는 최솟값을 찾기 위한 과정이다. 변분법은 이를 확장하여 그냥 함수가 아닌 '범함수'를 미분하여 0이 되는 정의역 값을 찾는 것을 목표로 한다. 더 정확히 말하면, 범함수가 정상상태가 되도록 하는 정의역 원소를 찾아내는 작업이다. [[물리학과]] 학생은 늦어도 2학년 2학기 때 공부하게 되며, 주로 [[역학]]이나 [[수리물리학]] 책을 통해 접한다. 그리 어려운 내용은 아니지만 생소한 부분이 있기 때문에 제대로 공부하지 않으면 [[라그랑주 역학]]부터 시작해서 [[양자역학]]까지 이해할 수 없게 된다.
요약:
조무위키에서의 모든 기여는 CC BY-SA 4.0 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
조무위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)